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ABSTRACT 

The electrical grid is due for an upgrade with many portions of the transmission 

lines and power plants going on for decades of service. These systems are not built with 

the increasing loads, changing energy sources, and global climate change. While it is not 

feasible to replace the aging components all at once, the grid can be upgraded to better 

minimize power failures and deficiencies of those older parts. PMUs are part of this 

upgrade solution, they provide real-time, two-way communication about power events 

along transmission and distribution lines by sending magnitude and phase of voltages and 

currents ~30 or more times per second. This helps to immediately identify issues and 

allows either manual or ideally automated systems to adjust. They also have the added 

benefit of time-tagging their data so events over a wide area can be simultaneously 

compared. While they play an important role, their associated development, installation, 

and maintenance costs impede even wider deployment. This project will implement a 

low-cost, microcontroller-based PMU. The microcontroller in this implementation is the 

based on an Arm Cortex-M4 processor with a floating-point unit and hardware 

accelerated Digital Signal Processing (DSP) instructions. This makes it very capable in 

the calculation of the fast Fourier transform that will be used to calculate the phasor 

forms of the sampled electrical signals. The phasors will then be time-tagged with a UTC 

timestamp coming a GPS receiver. The data will be then sent to a PC for visualization. 

The main emphasis of this project is to attempt to show that such a low-cost 

implementation that can meet the metrics in the IEEE standards governing PMUs is 

possible. However, due to inconsistent capturing of the input sinusoids the phase angle 

could not be calculated properly. Several outputs such as the frequency and rate of 
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change of frequency are derivatives of the phase angle and so they to would also be 

incorrect. The input signals were also sent through a breadboard which may have 

introduced more delay into the signals through extra capacitance or inductance. Future 

work would improve on the sampling and move away from breadboards and implement 

on a PCB where capacitance and inductance can be more tightly controlled.  
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CHAPTER 1: INTRODUCTION 

The current electrical generation and distribution system in the United States is 

aging and is being forced beyond its original use case. The grid faces the challenges of 

interfacing with new and evolving loads, changing energy sources and demands, and 

climate change affecting the reliability and quality of power [1],[2]. Solar, wind, and 

hydro sources are being added to the grid to encourage renewable energy, but they 

typically generate energy far away from the consumers. The challenges of climate change 

are growing every year, the increase in the number of hurricanes, flooding, droughts, 

increasing temperatures, and more have catastrophic affects by shutting down energy 

generation or destroying the transmission infrastructure [3]. Several countries including 

the United States, Canada, China, and parts of Europe have been pushing for the Smart 

Grid to address these growing concerns.  

The smart grid improves on the current grid by allowing two-way communication 

between the electrical service providers and the consumers, as well as sensing along 

transmission lines, and automated control of generation and distribution.  With this two-

way communication and more visualization of the grid, optimized generation and loading 

can occur and quicker restoration since problems are easily pinpointed [4]. Phasor 

Measurement Units (PMUs) are one of the most important components of this smart grid. 

They provide the required visibility by calculating the phasor-equivalents of the power 

signals and time-tagging them at high speed. The time-tagging allows data from over a 

wide-area to be combined to give a more accurate view of the overall system [5]. The 

high-speed sampling (typically ~30 samples per second) provides data on the real-time 

changes in the transmission lines. With this data, automated controls can be appropriately 
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activated. The challenge then faced by PMUs are their high initial costs for research and 

development and installation but also continuous cost for maintenance and repair [6]. 

Current PMUs are also typically closed source, so it is impossible for an electrical service 

provider to use them beyond their prebuilt purpose. The closed source philosophy also 

affects deeper understanding of the data received from those PMUs,  

There are several projects that have attempted and successfully implemented an 

open source PMU in response, such projects include OpenPMU, GridTRAK PMU, and 

Dtu PMU [7]. OpenPMU is of considerable note as they have collected and published 

resources for developing a PMU. Initially, they produced a PMU using a closed source 

National Instruments Data Acquisition (DAQ) hardware but have gone on to implement a 

PMU based around the BeagleBone Black [8]. GridTRAK and Dtu PMU are also good 

examples of academically developed PMUs that ran on PCs with Dtu PMU even being 

introduced to the Danish electricity grid. However, while GridTRAK was a good design, 

the method it used to calculate phasors incurred a loss of point-on-wave and harmonic 

information [7]. Dtu also used LabVIEW proprietary software from National Instruments 

which is also a continual cost to pay for licensing.  

The overall objective of this project is then to implement and verify a working 

PMU according to the IEEE standards governing PMU functionality to show a cheaper 

and open-source PMU based on a microcontroller can be developed. This project will 

also help to gather important design considerations and implementations so others may 

improve upon it.  
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CHAPTER 2: THEORETICAL BACKGROUND 

Synchrophasor 

 Synchrophasors are time-tagged phasors in polar form representing the magnitude 

and phase angle of sinusoidal electrical power signals. 

 Rate of change of frequency (ROCOF), an output of PMUs, can be obtained as 

the derivative of the frequency with respect to time.  

Phasor Representation: 

 A general sinusoidal waveform can be represented as follows in equation 1.1:  

𝑥(𝑡) = 𝐴 · cos(𝜔𝑡 + 𝜙) (1.1) 

A is the maximum amplitude of the signal with a radian frequency 𝜔 which is equal to 

2πfo, fo being the nominal frequency of the signal. Then ϕ is the phase shift of the signal. 

In a typical 3-phase power system each sinusoidal signal would have a phase shift 

difference of 120 degrees or 
2𝜋

3
 radians between each other as shown below 

𝑥1(𝑡) = 𝐴1 · cos(𝜔𝑡)  (1.2) 

𝑥2(𝑡) = 𝐴2 · cos (𝜔𝑡 +
2𝜋

3
) (1.3) 

𝑥3(𝑡) = 𝐴3 · cos (𝜔𝑡 +
4𝜋

3
) (1.4) 

 Using Euler’s formula 

𝑒𝑗𝑥 = cos(𝑥) + 𝑗 · sin(𝑥) (1.5) 

where j is the imaginary number. The general sinusoid defined earlier in equation 1.1 is 

shown to be related to this complex exponential function as the real portion when 
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expressed in trigonometric terms. In order to get to phasor representation of the sinusoid, 

it’s converted into its complex exponential form and removing the radian frequency for 

now, the conversion is as follows: 

𝐴 · cos(𝜔𝑡 + 𝜙) = ℜ𝑒{𝐴 · 𝑒𝑗(𝜔𝑡+𝜙)} = ℜ𝑒{𝐴𝑒𝑗𝜙 · 𝑒𝑗𝜔𝑡} (1.6) 

𝐴 · cos(𝜔𝑡 + 𝜙) = 𝐴𝑒𝑗𝜙 = 𝐴∠𝜙 (1.7) 

Equation 1.7 shows the conversion from cosine to exponential and the subsequent 

representation conversion to the desired polar form. Creating a synchrophasor can now be 

easily done with equation 1.7, by associating a phase with a time signal in Coordinated 

Universal Time.  

Discrete Fourier Transform 

The Discrete Fourier Transform (DFT) is used to perform Fourier analysis on a 

finite-sequence of equally spaced samples of a function in time, converting a signal from 

the time domain to frequency domain. This allows one to see the component frequencies 

present in the time domain signal. 

There exist real and complex versions of the DFT. In the complex version of 

the DFT, each time-domain datapoint is complex with a real and imaginary component. 

While the real DFT only deals with real valued data. For the sampled data that will be 

collected from this PMU, it would be sufficient to use the real DFT/FFT but for 

fullness this section will continue to consider the complex DFT/FFT in calculations. 
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Transforming from the time to frequency domain is known as the forward 

complex DFT which is seen in equation 1.8 and the inverse DFT in equation 1.9 [9], [10] 

e−
j2π

N = WN ;  Xk = ∑ xn · WN
nk 

𝑁−1

𝑛=0
=∑ xn · [cos (

2πkn

N
) − jsin (

2πkn

N
)]

𝑁−1

𝑛=0
  (1.8) 

𝑥𝑛 =
1

N
∑ 𝑋𝑘 · 𝑒

𝑗2𝜋𝑘𝑛

𝑁

𝑁−1

𝑘=0
 (1.9) 

There are several things to note, one is the replacement of the exponential term for 

another variable W, this is commonly called the Twiddle factor. Also, this strict 

implementation of the DFT is computationally inefficient and does not scale well. 

Looking at equation 1.8 it can be seen for each index of the output DFT requires N 

number of multiplications. This occurs for each index of the output which is of the same 

length of the input data, so an input of length N would require N times N multiplications. 

For increasingly large sizes, this becomes infeasible to calculate. Algorithms that increase 

the calculation speed of the DFT are broadly known as Fast Fourier Transforms (FFTs). 

Fast Fourier Transform 

 The most common method to efficiently calculate the DFT is through the Cooley-

Tukey FFT algorithm, which splits the calculation of the DFT into its even and odd 

indexed input values [11], [12]. Equation 1.10 shows how the formal DFT in equation 1.8 

can be rearranged into the calculation of the FFT 

X[k]  =  ∑ x(n) · WN
nk 

N−1

n=0

= ∑ x(2n) · WN
2nk

N
2
−1

n=0

 +  ∑ x(2n + 1) · WN
(2n+1)k

N
2
−1

n=0

 

= ∑ x(2n) · WN
2nk 

N

2
−1

n=0
+ WN

k · ∑ x(2n + 1) · WN
2nk

N

2
−1

n=0
  (1.10) 
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Before it was mentioned the variable W is known as the Twiddle factor. These are also 

known as nth roots of unity and exhibit symmetric and periodic properties that are 

leveraged by the FFT [13]. The meaning of these properties are as follows:   

Symmetry: WN

k+
N
2  =  −WN

k 

Periodicity: WN
k+N  =  WN

k 

With these properties, it allows the FFT to be split into the even and odd indexed values 

of the input. Take for example, a 4-point FFT, the 0th and 2nd even index values of the 

input share the same Twiddle factor with only a difference in sign between the two. This 

example also showcases another speed increase in the FFT in the calculation of the DFT. 

The input can be continuously reduced to smaller and smaller subsets of even and odd 

indices with the same Twiddle factor differing only in sign. In fact, the Cooley-Tukey 

FFT is extended until the DFT needs to be calculated for two input values with the same 

twiddle factor of a different sign. This becomes what is commonly known as a “butterfly” 

operation named in part because when the dataflow is visualized, the inputs and outputs 

are connected in what looks like a butterfly. Figure 1 shows the butterfly operation for 

two values visualized 

 

Figure 1: 2-point Butterfly Operation [14] 
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When the DFT is calculated on pairs of values, this is known as the Radix-2 Cooley-

Tukey Decimation-in-time FFT. The number of inputs used in one butterfly operation can 

change (e.g., 2, 4, and 8) creating Radix-n FFTs. Then once the outputs are computed, 

these values can be used in another stage that would combine the Radix-n butterfly 

outputs and this is done until the full DFT is calculated. That is the speed increase of the 

FFT, once the first stage is calculated those values can be used in the next stage, this 

saves the next stage N/2 calculations. In this manner, the solution can be solved 

recursively and reducing the required number of multiplications. Figure 2 visually shows 

the flow of data and butterfly calculations for an 8-point DFT in three stages [11] 

 

Figure 2: 8-point Decimation-in-Time FFT [14] 

 

The first stage does a butterfly operation on pairs of data of even or odd indices. Figure 2 

shows that for each of the 3 stages, only 4 or N/2 butterfly operations are required. That 

means only a total of 12 complex multiplications are required as opposed to the 64 

required in the definition of the DFT for an input of length 8.   
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Real Fast Fourier Transform 

 Another speed increase is that for real-valued inputs, the FFT only needs to 

calculate the DFT of size N/2+1. This is because X[N-k] turns out to be the complex 

conjugate of X[k] saving time from redundantly calculating the DFT for k greater than 

N/2+1.  

Sampling Frequency 

 According to the Nyquist-Shannon sampling theorem, to properly discretize a 

signal for a given frequency, it should be sampled at twice the frequency or higher [9]. 

Frequency Resolution 

 The frequency resolution is the ability of the FFT to differentiate between signals 

of specific frequencies. This is determined by the sampling frequency divided by the size 

of the FFT that is to be calculated.  

Complex Magnitude 

 The complex magnitude of X[k] has the same units as the input signal and is 

calculated below in equation 1.14 

Mag X[k]  =  √(Re X[k]2  +  Im X[k]2) (1.14) 

and it is calculated as the square root of the sum of the squares of the real and imaginary 

component [9], [15].   

Phase Angle 

 The phase angle of the DFT output is in units of radians or degrees. This value 

relates the difference in phases of the input signal in relation to a reference cosine signal 
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at the frequency specified by the frequency bin. In equation 1.15 is the calculation for the 

phase angle for a given frequency bin 

ϕ[k]  =  arctan (
Im X[k]

Re X[k]
)  radians (1.15) 

To find the phase angle, calculate the arctangent of the imaginary component over the 

real component of a specified frequency bin [9],[15]. This calculation outputs a value in 

radians which can be converted to degrees. 

 Calculation of the arctangent is not a trivial function to solve especially on 

microcontrollers. Using rational expressions or polynomials to approximate the 

arctangent create varying execution times and overhead costs [16], [17]. Typically, 

rational expressions provide the best accuracy between the two at the cost of higher 

computational resources to calculate division operations [16]. In [16], it provides a 

comparison study of both rational and polynomial approximations of varying degrees and 

providing their maximum errors and computational requirements. In conclusion, the 

following equation 1.16 is recommended and will be used in this implementation  

𝑥 =  (
Im X[k]

Re X[k]
) ;  arctan(x)  ≈

π

4
x +  0.273x(1 − |x|),−1 ≤ x ≤ 1 (1.16) 

Equation 1.15 provided the best compromise in terms of accuracy and computational cost 

of all the expressions and polynomials in the study in [16]. It should be noted that arctan 

is only defined in the range between [-1, 1]. A common function that can be implemented 

easily is arctan2 which takes into consideration the sign of the inputs to properly return a 

value in radian or degrees with the defined range of arctan. The considerations are in 

equation 1.17 as follows: 
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arctan2(y, x)  =

{
 
 
 
 

 
 
 
 arctan (

y

x
) , if x >  0

arctan (
y

x
) + π, if x <  0 and y ≥ 0

arctan (
y

x
) − π, if x <  0 and y <  0

+
π

2
, if x =  0 and y >  0

−
π

2
, if x =  0 and y <  0

undefined, if x =  0 and y =  0 }
 
 
 
 

 
 
 
 

 (1.17) 

Frequency 

 The frequency is the angular velocity of the AC power signal in units of Hz and is 

defined in equation 1.18 [18] 

f(t)  =
 1

2π
·
dθ

dt
= f0  +

 1

2π
·
d[ϕ(t)]

dt
 (1.18) 

Rate of Change of Frequency (ROCOF) 

The angular acceleration of a signal is in units of Hz/s. This measured value 

relates to the angular velocity of the sinusoidal input signal below in equation 1.19 [18] 

𝑅𝑂𝐶𝑂𝐹(𝑡) =
𝑑𝑓(𝑡)

𝑑𝑡
=

1

2𝜋
·
𝑑2𝜙(𝑡)

𝑑𝑡2
 (1.19) 

in the above equation, ROCOF(t) is the second derivative of the phase angle with respect 

to time (t), multiplied by one over two times π. Calculation of the phase angle from the 

DFT is required in the calculations of ROCOF. 
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CHAPTER 3: IMPLEMENTATION 

In Figure 3 is a system block diagram of the different functional blocks of the PMU.  

 

Figure 3: System block diagram of PMU 

 

The following sections will go into detail of the design and implementation of each 

block, and some of the key features of chosen components.  

Time Source 

The PMU uses the MediaTek MTK3339 GPS receiver. This receiver has several 

features ideal for this implementation [19]:  

• Ultra-High Sensitivity at -165 dBm (without a patch antenna) tracking  

o Typical received signal power from a GPS satellite is -127.5 dBm 

• Acquisition sensitivity: -148 dBm (cold) / -163 dBm(hot) 

o Cold being the first acquisition after startup 

• High accuracy 1 PPS single-ended signal with +/-10 ns jitter 
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• Low-power consumption (Acquisition: 25 mW; Tracking: 18 mW) 

• NMEA0183 Output (3V logic level) 

The GPS receiver comes installed on a breakout board provided open source by Adafruit. 

Figure 4 shows the GPS receiver on the breakout board. 

 

Figure 4: Adafruit Ultimate GPS Breakout. Photographed by Adafruit [20] 

 

The two important outputs used directly by the PMU are the 1 PPS signal that is sent to 

the digital PLL to generate the ADC disciplining signal and the NMEA0183 output (via 

asynchronous UART).  

NMEA0183 RMC is set as the output and is sent serially to the microcontroller to 

properly time-tag the calculated phasors. RMC is known as the recommended minimum 

specific GPS/Transit data and provides the required information for our synchrophasor 

without adding too much excess (e.g., Timestamp, validity of signal, Latitude, 

North/South, Longitude, East/West, Date, and a couple unused specifics).  

While the receiver sensitivity is high, using an external active GPS antenna 

increases acquisition/tracking sensitivity. In this implementation an active antenna by 
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Chang Hong Information Co., Ltd. is used. The active antenna draws an additional 8.6 

mA typically at 3V [21]. An image of the antenna is shown in Figure 5.  

 

Figure 5: Active GPS antenna. Photographed by Adafruit [22] 

 

Any active antenna can be used in place of the one used in this implementation. It needs 

to interface with the u.FL connector located on the breakout board.  

The GPS receiver breakout was tested to verify functionality. Below are screen 

captures from an oscilloscope connected to the 1 PPS output, looking at peak voltage, 

settling minimum, rise time, and settling time. The image below is the statistical 

information after the oscilloscope received ~1000 pulses from the receiver with an 

attached active antenna. Environmental conditions were clear skies, temperature at ~75 F, 

humidity ~66%, with the antenna placed outside of a window on the second story of a 

building.  
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Figure 6: Signal information after ~1000 pulses from GPS receiver 

 

Seen in Figure 6 is the 1 PPS signal after 1009 instances, with a mean of 1.06 Hz with a 

standard deviation of 0.17385 Hz. Therefore, with 95.4% confidence the portion of 1 PPS 

frequencies vary between 0.7123 Hz and 1.4077 Hz. The same test was conducted on 

another day with the same setup. The environmental conditions of the second day were 

overcast and foggy, temperature ~72 F, and humidity of 99%. Results of the test are 

shown below in Figure 7.  
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Figure 7: Signal information at ~1000 pulses from GPS receiver 

 

After 1118 instances of the 1 PPS signal, the mean is 1.00 Hz with a standard deviation 

of 0.01718 Hz. Therefore, with 95.4% confidence the portion of 1 PPS frequencies vary 

between 0.96564 Hz and 1.03436 Hz. The differences in the confidence intervals can 

most likely be attributed to the ability of the receiver to receive a GPS signal from the 

satellites overhead at the time of testing.  

The NMEA output message that is sent serially to the microcontroller from the 

GPS receiver was also verified. In Figure. 8, an example of the NMEA message and 

broken down into its component parts are shown.  
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Figure 8: Example of NMEA Output Message 

 

A typical NMEA message is started with a ‘$’ and then each section is separated with a 

comma. Immediately following after the ‘$’ is the NMEA output type, in this case is 

recommended minimum specific GPS/Transit data (RMC). The most important portions 

of this message are the time, date, fix/quality, and location. Even the location is only 

needed once the PMU is first turned on or location is changed. The GPS receiver used in 

this implementation has an accompanying library provided by open source by Adafruit, 

that allows easy capture of the GPS information and accessing the component parts of the 

message.  

 The GPS receiver used in this implementation is one possible solution for the 

Time Source of the PMU. Any receiver can be used that meets the desired requirements 

for a given installation. The most important abilities are to output an accurate 1 PPS 

single-ended or differential tied to UTC time and reporting GPS information.  
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Processing 

Processing will be done on chip in the Microchip ATSAMD51 ARM Cortex-M4 

microcontroller. The microcontroller used in this implementation is broken out on the 

Adafruit Grand Central M4 express development board. An image of the development 

board is in Figure 9. 

 

Figure 9: Adafruit Grand Central M4. Photographed by Adafruit [23] 

 

The Cortex-M4 SoC is used due to its high clocks speeds of 120 MHz, 32-bit RISC 

architecture, floating-point unit, integrated SAR-ADC, and the inclusion of Digital Signal 

Processing (DSP)-specific instructions [24]. Tests on 256-point DFT calculation speed on 

microcontroller using DSP instructions on floating-point values were conducted and the 

results can be seen in Figure 16. The 256-point DFT is used because this is the desired 

DFT size for this implementation. The 256 floating-point values were generated in 

MATLAB for a 3 Vp-p at 60 Hz with 30dBW noise with a 1.65 V DC bias over 1 period 

then used in the test code.  
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Figure 10: Frequency chart of 256-point DFT  
 

Running  analysis on the data of 100,000 samples yields that ~80% of execution times 

falls on 135 microseconds and below and the mean is 135.0588 microseconds while the 

median value is 135 microseconds. The difference in the mean and median this indicates 

there is a right-skew present in the data, calculation of the skew shows a value of 0.59961 

meaning the data is moderately right skewed. A normal distribution function cannot be 

applied, instead the median will be used for the skewed data to calculate a confidence 

interval. However, the median of 135 needs to be confirmed. To further confirm that 135 

is the median of the dataset, bootstrap analysis was used. 1000 subsets of 20 randomly 

sampled datapoints were generated, the median value for each subset was then calculated. 

In Figure 11, the results of the bootstrap analysis are shown. 
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Figure 11: Bootstrap Analysis of 256-point DFT Median 
 

The bootstrapped 95.4% confidence-interval for the median lies between [134.808, 

135.192]. Now a 95.4% confidence interval for the execution time of all the samples can 

be given with a median of 135 and a standard deviation of ~0.806 which yields [132.388, 

136.612] microseconds. From the previous section on the ADC, using the non-

oversampled read time, it would take ~23724 microseconds to acquire 256 samples and 

calculate the DFT. That estimate is also only based on a single-phase line. Other factors 

like the structure and organization of the code, sampling of the 3-phase voltage and 

current lines will change output speed. Further speedups related to the microcontroller 

itself would be to decrease DFT size or implement DMA transfers of ADC data to 

memory. Decreasing the size of the DFT will also decrease the number of required 

calculations and therefore decrease execution time. Fixed-point integers could also 

increase speed of execution. Caution should be considered with the use of floating-point 

integers since they may lose precision in cases of overflow of arithmetic operations. 
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DMA transfer can help increase output by freeing up the microcontroller to perform DFT 

calculations while DMA controller directs data to memory.  

 Tests were also conducted on the 128-point DFT over 100,000 samples and are 

shown in Figure 18 to show the difference in execution times. The 128 floating-point 

values were generated in MATLAB for a 3 Vp-p at 60 Hz with 30 dBW noise with a 1.65 

V DC bias. 

 

Figure 12: Frequency chart of 128-point DFT 

 

Even before conducting further analysis on the data, the data is right skewed, but ~95% 

of all execution times complete in 58 microseconds per calculation of the DFT. This is 

roughly half the time required to calculate the 256-point DFT. While good in terms of 

speed, the tradeoff is a decrease in frequency resolution of a smaller DFT. However, in 

the Timings section, the choice of DFT size is limited by a few other factors. These 

factors are the time to execute a read on an ADC channel and the period between 
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sampling signal pulses for the ADC. Timings will further discuss how it is not viable to 

calculate the 256-point DFT or higher given the time to execute the read commands on 

the ADC channels which are discussed in Analog to Digital Converter and Analog 

Interface and Antialiasing Filter subsections of Data Acquisition.  

 The accuracy of the DFT on the microcontroller was also tested, this was 

compared to an DFT computed in MATLAB. The same datapoints used in execution 

speed of the 256-point DFT is used for this testing. Again, 256 datapoints were collected 

for one period of the signal and then given to the microcontroller and MATLAB to 

calculate the FFT. In Figure 13, the percent difference of the normalized, single-sided 

amplitudes of the outputs is shown.  

 

Figure 13: Percent difference of normalized, single-sided amplitudes of FFT outputs 
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Figure 13 shows that the mean of the percent difference between the microcontroller and 

MATLAB is calculated to be 0.0475 percent. This shows the microcontroller DFT is 

comparable to the MATLAB DFT.  

Another thing to consider when thinking about FFT size is the frequency 

resolution of the FFT which is dependent on FFT length and the sampling frequency. The 

frequency resolution/bin sizes of the FFT will be limited by this value. This will be the 

ability of the FFT to differentiate between frequencies.  

The flowchart for this section is shown in Figure 14. 

 

Figure 14: Flowchart of Processing Block 

 

Once the desired number of datapoints per cycle is reached, the phasor is calculated and 

then time-tagged to create the synchrophasor. The data is then sent over ethernet using 

the User Datagram Protocol (UDP).  
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Data Acquisition 

Phase Locked Loop (PLL) 

The AD9544 is used in this PMU implementation. This chip is typically used in clock 

generation and can accept the single-ended 1 Hz, 1PPS signal coming from the GPS [25]:  

• 5 pairs of clock output pins useable in differential LVDS/HCSL/CML or as 2 

single-ended outputs 

• 2 differential or 4 single-ended input inferences 

• Single 1.8 V power supply operation with internal regulation 

• Typical current draw ~400 mA 

• 3.3V operation for I/O 

• Built in temperature monitor/alarm and temperature compensation for enhanced 

zero delay performance 

Below in Figure 15 is the functional block diagram of the IC 

 

Figure 15: AD9544 Functional Block Diagram. Image by Analog Devices. [26] 
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There is an evaluation board that can be purchased that implements all 

functionality of this IC with supporting circuitry. Documentation on the schematics and 

PCB are openly available to the public on Analog Devices website. This implementation 

instead used a custom PCB to implement only the desired functionality while taking 

design considerations from the evaluation board. Below is an image of the custom PCB 

in Figure 16. 

 

Figure 16: Custom AD9544 PCB 

 

 Using either an evaluation board or custom PCB requires programming of the 

digital PLL over I2C or SPI. Specific registers locations and value descriptions can be 

found on the website, but Analog Devices also offers free software that lets you set up the 

IC to desired specifications. After setting up the IC in software, it can output the locations 

and required values to write to the physical chip so that it matches with the software 

implementation. In this case, the digital PLL will take a single-ended 1 PPS signal from 

the GPS receiver and output two phase matched single-ended signals of the desired 

sampling frequency.  
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 While using the digital PLL to generate the proper sampling signal from the 1 

PPS signal is ideal, unfortunately hardware debugging of the custom PCB is too time-

consuming for the scope of this project. Instead, the 1 PPS signal will instead be fed to 

Atmega 328P that is implemented on the Adafruit Metro (similar implementation to an 

Arduino Uno) and then a PWM signal of the chosen sampling frequency will be 

generated for use as the sampling signal for the ADC. This configuration is similar to one 

described in [8] to generate the sampling signal. An example of the PWM signal 

generated by the Atmega 328P is shown in Figure 17.  

 

Figure 17: ADC Sampling Signal Generated by Atmega 328P 

The measurements generated by the oscilloscope show that the PWM signal is at 7.680 

kHz and a corresponding period of 130.15 microseconds.  

 Arduino Unos and their variants like the Adafruit Metro are known to produce 

PWM signals but are limited by the software implementations provided by Arduino in 
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their libraries. In order to generate the PWM signal shown in Figure 17, several internal 

registers must be properly set. The code and information on PWM generation was 

derived from [27] which shows how to generate non-typical PWM signals that can be 

produced by the Arduino libraries. However, that implementation in [27] used only the 8-

bit timers and counters while this PMU implementation uses the 16-bit timers and 

counters to generate the sampling signals. However, the same steps can be followed 

while adjusting them for use with the 16-bit timers. Using the Atmega 328P datasheet 

[28] shows what specific registers to adjust and what bits to set to get the desired output 

using the 16-bit timers and counters. Table 1 shows the internal registers that must be set 

and their values to generate the desired sampling signal of 7.680 kHz. 

Register Binary Hex 

TCCR1A 1010 0011 0xA3 

TCCR1B 0001 1001 0x19 

OCR1A 0000 1000 0010 0010 0x0822 

 

Table 1: Atmega 328P Internal Registers for PWM Generation 

 

Given these register values, the Timer/Counters were set to operate in FastPWM mode 

with non-inverting output, using the system clock with no prescaling. The timer upper 

limit is then set by OCR1A which is equal to decimal value 2082. This value of 2082 can 

be found using formulas found in [28] and Section 15.9.3 Fast PWM Mode in [27].  

Analog to Digital Converter (ADC) 

When considering what ADC to use, there are several things to consider. This 

includes the desired resolution of the measured data which is determined by the bit 
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resolution. Ideally, there should be multiple channels that can simultaneously sample and 

hold the values. There is also the type of ADC, Successive Approximation (SAR) and 

Sigma-Delta (ΣΔ) are the most common. Of the two, SAR ADC have a much faster 

conversion rate, but the resolution range is smaller compared to sigma-delta. The sigma-

delta can reach resolutions of 32-bits while SAR typically reach 18-bits. However, only 

SAR-based can have multiple channels that can sample so SAR-ADCs will be used. 

Specifically, the internal SAR-ADC on the ATSAMD51 on the Adafruit Grand Central 

M4 will be used.  

Another thing to consider before choosing an ADC is to determine what is the 

desired sampling frequency. The sampling frequency determines how many points per 

period there is which also determines the FFT size. The FFT size and sampling frequency 

have a proportional relationship, when trying to compute the FFT per period, with a 

constant of proportionality equal to the operating frequency of the electrical power 

signals (~60 Hz typically in the US).   

𝑓𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔  =  k · S 

Where 

𝑓𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 is the required sampling frequency for the desired FFT size in Hz 

𝑘  is the nominal frequency of the given input samples 

𝑆  is the desired FFT size 

In the case of this implementation, the desired FFT size is 256-points and the operating 

frequency of the electrical power signals is 60 Hz. Therefore, the required sampling 

frequency is 15.36 kHz. However, later on it will be shown that at the 15.36 kHz 
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sampling clock is not possible because it is not enough time to sample on more than one 

or two channels of the ADC.  

Originally the AD7606B was chosen over the on chip one on the microcontroller. 

However, setup and verification of the external ADC proved to be difficult. This 

implementation now uses the on-chip ADC. The ADC is similarly capable as the external 

at a lower resolution. The AD7606B has a 16-bit resolution without oversampling while 

the on chip has a 12-bit resolution. There are several additional benefits to using the 

internal ADC, while it has a lower resolution it can be increased through oversampling 

and averaging, higher sampling of 1 Msps over the 800 ksps of the external ADC, and 

finally the ADC registers can be directly linked to Direct Memory Access (DMA) 

transfers immediately after sampling which can free up instruction cycles for FFT 

calculation.  

The oversampling method mentioned above to increase the resolution of the data 

does not come without some tradeoffs. When oversampling is used, it averages the ADC 

values over several samples, and this increases the time to get a fully averaged sample. 

The time can vary depending on the number of values that are being averaged. In Figure 

17, the results for the execution time of an ADC channel read using the analogRead 

function with no oversampling are shown. By default, analogRead is not implemented 

with oversampling but can be adjusted with several lines of code seen in Appendix B. 

The following data does not include any data transfer and only concerns reading an 

individual sample from a single ADC channel. The ADC channel is this test case is 

connected directly to the 3 V power output header on the Adafruit Grand Central 

development board. Also take note that the times shown may not accurately represent 
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only the execution time of analogRead but will give a good estimate. This is due to the 

micros function used in the code in Appendix B for calculating elapsedtime which adds 

additional software overhead in time. However, it was found the micros function only 

adds between [0,1] microseconds to the execution time seen in the graphs.  

 

Figure 18: analogRead with no oversampling 

 

The data execution time is approximately normal. Analysis of the mean and median show 

that the values are 27.0381 and 27, respectively. The skewness of the data is 0.035264 

and can therefore be considered approximately symmetric. With this, a 95.4% 

confidence-interval for execution of a non-oversampled ADC reading can be expected to 

be within [25.96903, 28.10717] microseconds. Next, in Figure 18, the execution time for 

an ADC channel read using the analogRead function with oversampling is shown, 16 

samples are averaged for the oversampling implementation.  
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Figure 19: analogRead with oversampling 

 

With this data, the mean, median, and skew are found to be 207.13525 microseconds, 207 

microseconds, and 0.032692 respectively. This allows the data to be considered 

approximately symmetric. A 95.4% confidence-intervals for execution time of 

oversampled ADC reading yields [206.0127, 208.2578] microseconds. This increase in 

time to oversample is not viable as the period between sampling pulses for the 128-point 

and 256-point (i.e., 130 and 65 microseconds respectively) would not allow even one full 

channel capture on the ADC to complete before the next pulse. Therefore, the non-

oversampled implementation of analogRead will be used. The Timings section will 

further elaborate on this.   
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Analog Interface and Antialiasing Filter  

The analog interface from the power lines to the ADC channels is a transformer. 

It couples together the power lines and the inputs to the ADC and provides electrical 

isolation between them. In this implementation, a step-down signal transformer takes a 

120 VAC and steps it down to 12 VAC, with a max current output of 1.6 A. While these 

voltage and current values are more manageable, the microcontroller used is not able to 

handle such values.  In order to further reduce the voltage, a basic resistive voltage 

divider is used to step down 12 Vp-p to ~3.3 Vp-p. However, the voltage signal is centered 

around 0 V, which means the signal oscillates between positive and negative values. A 

DC bias is added to bring up the whole signal into the positive region. Figure 19 shows 

the output after the voltage divider and DC biasing on the secondary of the transformer 

for three phase lines at 120 VAC at 60 Hz with some non-nominal frequency components 

in LTSpice. 
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Figure 20: Analog Interface LTSpice Simulation 

 

 The previous section produced a resistive network that further lowered the voltage 

from 12 Vp-p to ~3.3 Vp-p and added a DC bias. However, another concern is that realistic 

power signals may have lower and/or higher frequency components that are introduced 

by the different mechanisms used to generate and distribute electricity. Therefore, a low-



33 

 

pass filter that can attenuate at least the higher than nominal frequency (60 Hz) 

components is required. This implementation will use an active low-pass filter at unity 

gain. An active low-pass filter attenuates the higher frequency components and separates 

the high impedance created from the voltage divider, pull-up resistor, and RC circuit and 

creating a low impedance output [29]. Low output impedance is required because this has 

a direct effect on sampling time and accuracy for the SAR-ADC. A SAR-ADC like the 

one used in this implementation has an internal RC circuit per channel that is used to 

measure the voltage. However, if a large external impedance (>10 kΩ) is added, this will 

cause the charging time of the capacitor to be longer than any known sampling times 

stated in the datasheet. If the capacitor is not properly charged in the allotted time, then 

the reading will be inaccurate [30]. Therefore [24] provides known sampling times for 

specific resistance ranges. To get the shortest sampling time at 12-bit precision, the 

external impedance going to the ADC channel must be less than 147 Ω.  

 The active low-pass filter will consist of an RC circuit placed before an op-amp 

that will be set to unity gain. The cutoff frequency is set according to desired 

specifications and is set to 65 Hz in this case. From there, the values of the resistor and 

capacitor are set until the desired cutoff frequency is reached. Below is the equation to 

determine the cutoff frequency (65 Hz), and an equation that was derived to find the 

value of capacitance [29].    

𝑓C  =
 1

2πRC
 Hz 

C =
 1

2πfCR
F 
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The first equation is used to determine the cutoff frequency, in this implementation 

several values must be chosen. The desired cutoff frequency (i.e., fc or f-3dB) is 65 Hz, 

then the equation is rearranged to calculate the required capacitance. In an RC circuit it is 

much easier to adjust the resistance. In the second equation, it is shown that R and C also 

have an inverse relationship. Therefore, R can be made arbitrarily large to reduce the 

value of C. Smaller capacitance means physically smaller capacitors that can be used. R 

here is equal to the series connection of the arbitrarily chosen 20 kΩ resistor, and the 

5357.14 Ω equivalent resistance of the divider and pull up resistor. The total resistance in 

the cutoff frequency calculation is 25357.14 Ω. To get a 65 Hz cutoff frequency with the 

chosen resistance, the capacitor would need to have a value of 0.1 μF. This is an 

acceptable value of capacitance, capacitors in this range are small, widely available, and 

affordable. From here, the voltage then goes through the op-amp with unity gain. Figure 

20 shows a circuit implementation of the active low-pass filter at unity gain with the 

chosen values.  

 

Figure 21: Active Low-pass Filter Op-amp Protection 
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In Figure 20 the active low-pass filter for a single phase was shown but on the 

output side there is another RC circuit. This portion has the objective of stabilizing the 

op-amp voltage and current to correctly the drive the SAR-based ADC. While the unity 

gain op-amp ideally outputs the input signal at lower impedance, without additional 

supporting circuitry it is vulnerable to currents from the internal RC sampling circuit. In 

[30], it provides a methodology in designing a RC protection circuit for the op-amp while 

maintaining low impedance, that circuit is seen in Figure 18 at the op-amp output. This 

methodology involves, characterizing the input signal, ADC requirements, choosing the 

values for the external protective RC circuit, and finally op-amp requirements. Using the 

methodology stated in [30], it produces the following characterizations, requirements, 

and values for the ADC and its input(s) for this implementation seen in Tables 1, 2, 3, 4, 

5, and 6.  

Input Signal 

Highest Frequency 60 Hz (single channel) 

Largest Voltage Swing 0 to 3.3 V 

Accuracy 805.7 μV LSB size / 12-bit with range of 

3.3 

 

Table 2: Input Signal Characterization 
 

 

 



36 

 

ADC Requirements 

Minimum Requirements • Min. sampling freq. two times 

higher than max. signal freq. 

• Additional 10 to 20 x multiplier 

Sampling Rate > 2.4 ksps 

 

Table 3: ADC Requirements 

 

The internal SAR-based ADC on the ATSAMD51 used in this PMU sufficiently meets 

the minimum requirements desired. Table 2 provides important characteristics of the 

internal ADC. ADC specifications from [24] will be used for further calculations.  

ADC Characteristics 

tACQ (ADC Acquisition Time) 1 TAD = [62.5, 6250] ns 

CSH (ADC Input Capacitance) [min, max] = [2,3] pF 

k (12-bit time constant multiplier) 12 

VFSR (Full-scale input range of ADC) 3.3 V 

 

Table 4: ADC Characterization 
 

The information provided on the ADC characteristics are important for the further 

calculation of the resistor and capacitor values that are placed between the op-amp and 

internal sampling circuitry. It is also of important note that for increasing values of 
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Rsource, [24] provides increased sampling times. This implementation chose to use an 

Rsource ≤ 147 Ω to minimize sampling time.  

External Capacitor (CFLT) 

CFLT = QINTERNAL / (805.7 μV) [8, 12] nF 

 

Table 5: External Capacitor Requirements 
 

In [30], a comparison of different capacitor dielectrics (X7R, Z5U, Y5V, and Silver 

Mica) shows that different dielectrics materials introduce increasing total harmonic 

distortion and noise (THD+N) at increasing frequencies. While at the 60 Hz of the PMU 

inputs, the different dielectrics have the same THD+N. So, any of the dielectrics listed 

are suitable for use. This implementation uses a C0G, 8200 pF/8.2 nF capacitor.  

External Resistor (Rsource/RFLT) 

RFLT ≥ (0.60 * tACQ)/(k * CFLT) [0.39, 26] Ω 

 

Table 6: External Resistor Requirements 
 

As long as the Rsource is greater than or equal to 26 Ω it will be suitable for any value of 

CFLT. Another limiting factor is the sampling time, this implementation stipulated a 

desired Rsource value to be less than 147 Ω. Therefore, Rsource is arbitrarily chosen to 

be a common resistor value of 50 Ω.  
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Primary Op-Amp Buffer Specs 

Gain Bandwidth Product (GBWP) 

• GBWP > 4 * fFLT f-3dB 

• fFLT f-3dB = 1/[2π*50*8.2nF] 

fFLT f-3dB = 388.183 kHz 

GBWP > 1.552731 MHz 

Output Impedance of Op-amp (RO) 

• Desired: Ro ≤ 9 * RFLT 

RO ≤ 450 Ω 

Closed Loop Gain Bandwidth (fCL) 

• Desired: fCL > 2 * fFLT -3dB 

fCL > 776.366 kHz 

Slew Rate to Track 60 Hz input (SROPA) Minimum = 0.0006 V/us 

Optimal = 0.0012 V/us 

 

Table 7: Primary Op-Amp Requirements 

 

Using these values, the Analog Devices OP279 op-amp was chosen. Simulation results 

after choosing all resistor and capacitors values with an ideal op-amp in LTSpice are 

shown in Figure 21. The simulations also use the same input signals shown in Figure 19.  
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Figure 22: Voltage signal at different points of analog interface to ADC 

 

To verify the simulations, a physical implementation of the design was tested. First, a test 

of chosen op-amp was conducted. Oscilloscope readings in Figure 21 and Figure 22 show 

the input and output respectively, are tracking well and show little to no signal 
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attenuation. The signal is a 3.3 Vp-p sine wave at 60 Hz with a 1.65 V DC bias that is 

generated by a waveform generator.  

 

Figure 23: Op-amp input and output tracking, Oscilloscope Channel 1 

 

 

Figure 24: Op-amp input and output tracking, Oscilloscope Channel 2 
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The measurement values between the input and output channels match closely with each 

other just expected form simulations and design. Now, using the fully designed front-end 

of the ADC, Figure 25 will show the execution time of the analogRead function. The 

same input from testing the op-amp will be used.  

 

Figure 25: Execution Time of AnalogRead with RC Interface 

 

Previously, when testing the execution time certain variables were taken for granted. One 

being the impedance seen by the ADC channel from the power output pin was assumed 

to be low. Second, the default implementation of analogRead has the sample length set to 

5. Now, the Rsource is set deliberately to 50 Ω and the sample length is set to 1. The 

sample length change is reflected in the updated test code in Appendix D. Comparing the 

previous execution time now with the current times, there is a noticeable several 

microseconds decrease in the execution time with the adjustments. The previous data had 
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a mean around 27 microseconds, while now the mean is around 24 microseconds. 

Decreasing the sample time will help to free more time for DFT calculation.   

Transmission 

The WizNet W5500 is used to easily implement communications over ethernet 

with minimal testing and board preparations. In this implementation, it is provided on a 

breakout board. A photograph of the board is shown below in Figure 26. 

 

Figure 26: Adafruit Ethernet Feathering. Photographed by Adafruit [31]. 

 

The W5500 communicates with the microcontroller over Serial Peripheral 

Interface (SPI). Once the synchrophasor data is generated, the data is sent to the W5500 

over SPI and then sent over the specified protocol (UDP) to the desired endpoint. An 

open-source library developed by Arduino is used to set chip and communication 

settings. Figure 27 shows the flowchart for the transmission functional block. 
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Figure 27: Flowchart for Transmission Block [32] 

 

The Cortex-M4 can be configured with Ethernet 10/100 capabilities. However, 

this would require additional time for software and hardware testing. Instead, a separate 

Ethernet controller is used in this implementation for ease of use.  

Tests were conducted on how long it would take to send a full PMU output 

message which consists of 336 Bytes of data per channel, not including any overhead 

associated with UDP. In Figure 28 is a histogram of times it took to send a full PMU 

message over UDP.  
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Figure 28: Histogram of Times to Send Full PMU Message 

 

Looking at the spread of times seen, generally the data can be sent before the next FFT 

needs to be calculated and sent out. In a later section known as Timings will show during 

the period between sampling discipline signals, there is idle time that can be used for 

transmitting data. In the ideal case, the full message can be sent within a couple periods 

of the sampling disciplining signal. However, there are instances that are shown in the 

data where it takes greater than 3000 microseconds to send the message. In those cases, 

there is the possibility that there will be losses in the PMU output. A previous message in 

transmission may overlap with the calculation and transmission of the next message. This 

will only be worse if such a spike in transmission occurs for multiple or all channels and 

consecutively. However, looking directly at the data shows that instances of times to send 

in excess of 3000 microseconds do not occur often. Figure 29 shows another histogram of 

times to send a full PMU message with occurrences of less than one removed.   
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Figure 29: Reduced Histogram of Length of Time to Send Full PMU Message 

 

The range of times now looks a lot better with the upper and lower limit being able to 

execute within several periods of the discipling signal and before the next PMU message. 

Using these timings, it would also be possible send a full PMU message for all three 

channels.  

 While these times are good, UDP is known to have questionable reliability and 

correctness during transmission. There are no methods implemented unlike in TCP which 

uses checksums to ensure correctness or ensure transmission of dropped packets. Even 

during testing of the Ethernet Featherwing, occasional UDP messages would be incorrect.  

Timings 

 As discussed in previous sections, the time to execute a read on all the channels of 

the ADC and the period between sampling pulses are two important factors that limit the 

choice of FFT. Figure 30 graphically shows per period usage of the microcontroller for a 
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65 and 130 microsecond period (i.e., 15.36 kHz and 7.680 kHz sampling signal 

respectively).  

 
 

Figure 30: Microcontroller Utilization Per Sampling Period Using Mean Execution Times 
 

In the case of the 65 microsecond period of the 15.36 kHz sampling signal, given the 

mean time to read per channel, it is not possible to execute a complete read before the 

next pulse which initiates an interrupt. That estimate also does include any additional 

overhead that may be present with the code implementation. Figure 30 shows that a 

complete read of channel 3 would never occur and that there is no excess time for any 

other calculations or transmission of data. A sampling frequency 15.36 kHz also 

correlates to a 256-point FFT, making it unfeasible and limiting the 128-point FFT as the 

next best option if trying to compute an FFT per period. The sampling frequency could be 

lowered even further if it’s desired to maintain the FFT. Decreasing the sampling 

frequency and maintaining the FFT will also improve frequency resolution.  

24

24

24

24

24

17

58

0

130

65

P
E

R
IO

D
 L

E
N

G
T

H

TIME (MICROSECONDS)

MICROCONTROLLER UTILIZATION
PER SAMPLING PERIOD USING MEAN

EXECUTION TIMES

Sample CH1 Sample CH2 Sample CH3 Calculation/Transmission/Idle



47 

 

CHAPTER 4: EVALUATION METRICS 

The following summary of evaluation metrics come from the standards set forth 

by IEEE/IEC 60255-118-1 [20], it highlights some of the main metrics to test.  

To evaluate performance, the measured values generated by the PMU will be 

compared against reference values using several key formulas. The formulas used are: 

Total Vector Error (TVE), Frequency Error (FE), and ROCOF Error (RFE). Several other 

metrics to consider are measurement response and delay time, overshoot/undershoot, 

reporting latency, operational errors, and etc.  

Based on the evaluation of the above-mentioned metrics and those in [20] help to 

determine how the PMU complies.  

Total Vector Error (TVE) 

The TVE is defined as:  

TVE(n)  =  
√[X

^

r(n) − Xr(n)]
2

+ [X
^

i(n) − Xi(n)]
2

[Xr(n) + Xi(n)]2
 

where  

n    is the discrete report number representing the report time 

𝑋
^

r(𝑛) and 𝑋
^

𝑖(𝑛) are the real and imaginary PMU estimates at report time n 

Xr(n) and Xi(n) are the real and imaginary reference values at report time n 

this the difference or error between the measured and reference vectors. This calculated 

value considers the amplitude and phase difference together and is normalized with 

respect to the reference signal.  
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Frequency and Rate of Change of Frequency (ROCOF) Error 

The FE and RFE are both evaluated the same way as the difference of the 

measured values from the PMU and the reference values. They are in terms of Hz and 

Hz/s respectively:  

FE(n) = (fmeasured(n) − freference(n)) [Hz] 

RFE(n) = ((
df

dt
)
measured

(n) − (
df

dt
)
reference

(n)) [
Hz

s
] 

The measured and reference values are for the same time, which is given by the time tag 

from the corresponding measured and reference value.  

Measurement Response and Delay Time 

Measurement Response Time 

Defined as the measurement response time to transition between two steady-state 

measurements before and after a step change is applied to the input. This can be 

determined as the difference between the time that the measurement leaves a specified 

accuracy limit and the time it reenters and stays within the limits when a step change is 

applied to the PMU input. Time is based on the UTC time scale.  

In order to test, the input will be held at steady-state before and after a positive or 

negative step change in amplitude or phase. This step change and the measurement 

response time will be characterized by the TVE, FE, or RFE.  

Results of this test help to categorize the PMU between Performance P-class and 

Measurement M-class. 
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Measurement Delay Time 

Defined as the time interval between the instant that a step change is applied to 

the PMU input and measurement time that the stepped parameter achieves a value that is 

halfway between the initial and steady-state values. UTC is always used.  

Along with the above condition the test for measurement delay time also applies a 

positive or negative step in amplitude or phase between two steady-state periods.  

Results of this delay time evaluation are used to verify that the time tagging of 

synchrophasors measurement time is properly compensated for the filtering system group 

delay. This is a basic performance method associated with signals and measures the 

amount time for the different signal components of a signal to go from the measuring 

device input to output.  

Overshoot and Undershoot 

Aberrations before and after a transition such as a step change in phase or 

magnitude. The overshoot and undershoot magnitudes relative to the amplitude of the 

step are limited.  

Measuring this performance metric determines if a PMU can accurately recognize 

and report dynamic changes in power signals. Abrupt changes in magnitude or phase are 

common and can help diagnose problems along the transmission lines.  

However, if reporting rates of synchrophasors (Fs) is lower than 10/s, they do not 

have to meet dynamic performance requirements [18].  
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Reporting Latency 

Defined as the maximum time interval between the data report time as indicated 

by the data time stamp, and the time when the data becomes available at the PMU output 

(this is when the first bit of the output message is available to the communication 

interface).  

Operational Errors 

The PMU must communicate all internal problems experienced during runtime 

such as, ADC errors, memory overflow, calculation overflow and any other condition 

that could cause an error in the measurement.  
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CHAPTER 5: METHODOLOGY 

This project is based on the design of a low-cost and open-source PMU system 

based around a 32-bit RISC microcontroller. Specifically, the ATSAMD51 running an 

ARM Cortex-M4. The process begins by designing and assembling the different 

functional blocks of the PMU system. The system-block diagram in Figure 31 shows the 

different functional blocks  

 

Figure 31: System-block Diagram of PMU system 

 

Once each block is assembled, it will be tested to ensure it behaves properly. 

After each block is assembled and tested, they will be slowly integrated together and 

tested again as a new group. This integration will eventually encompass all blocks until 

the system is fully assembled.  

The next step will be to follow the evaluation and compliance testing specified in 

[18].  
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Ideally, the PMU would be tested used real power signals but currently there is no 

safe access to such power signals for testing. Instead, an arbitrary function waveform 

generator will be used to mimic the signals that the PMU may see in actual operation. 

Then the PMU output will be evaluated based on the metrics set in [18].  

Below in Figure 32 is a diagram of the system that will be under test. Figure 33 

shows a photo of the actual setup used. Using the function waveform generator, it’s 

limited to producing two outputs at two different phase shifts or one signal composed of 

multiple signals of different frequency components.   

 

Figure 32: Actual System Under Test 
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Figure 33: Photo of Actual Setup 
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CHAPTER 6: RESULTS & CONCLUSION 

This project attempted to design a low-cost, microcontroller-based PMU which 

could accurately measure the magnitude, phase angle, frequency, and ROCOF. However, 

the project did not accomplish this goal, but it is on the right track.  

When testing began, the UDP messages that were received seemed incorrect at a 

glance, mainly the phase angles seemed wrong. In order to check if it were the UDP 

messages that were incorrect, or if the data coming from the microcontroller was 

incorrect the, the phase angles for two channels were printed to the serial monitor of the 

Arduino IDE. The following phase angle graph was generated from the values copied in 

the serial monitor in Figure 34.  

 

Figure 34: Phase angles Graph 

For CH0 the phase angle was expected to be 0 but in Figure 33 the phase angles it 

sometimes zero but can spike to +/-1 or nearly +/-3 radians out of phase. Then, in an 
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attempt to recreate the problem, the whole system and function generator were restarted. 

The phase angle for just CH0 were then outputted to the serial plotter. The phase angles 

are still incorrect as seen in Figure 35.  

 

Figure 35: Phase Angle Channel 0 in Serial Monitor 

 

To diagnosis the problem, the ADC values captured by CH0 are plotted on the serial 

plotter. Then each time a full capture of 128 ADC values is completed, a spike in value of 

5 appears on the same graph of the CH0 captured values to indicate the end of the capture 

window, this is shown in Figure 36.  
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Figure 36: Values captured on ADC CH0 

 

As seen in Figure 36, the sinusoid that is captured is changing between each full capture 

of 128 points or one period. One period could appear to be perfectly aligned with a cosine 

at the nominal frequency while another period could appear as a phase shifted version 

even if the signal from the function generator has no phase shift. This would explain the 

incorrect phase angle measurement Figures 34 and 35. In [8] it is mentioned that the 

phase estimation is sensitive to the sampling being consistent and accurate. This problem 

would also appear on the other channels since they are sampled sequentially. Figure 25 in 

the section Analog Interface and Antialiasing shows that on average there would be a 24 

microsecond difference in time between captures with some variance in execution time. 

There could also be a time delay to the physical implementation which has the input 

signals going through breadboards. This could introduce extra capacitance or inductance, 

changing the input signal.  
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CHAPTER 7: IMPROVEMENTS AND FUTURE WORK 

The end goal of the project to create a PMU and measure its accuracy was not 

achieved. Sampling of the input waveform is not accurate and the point on the waveform 

that is sampled changes every period. The waveform seen changing every period makes it 

look the signal is changing constantly to be a cosine that is phase shifted. This leads to 

inaccurate measurements of both magnitude and phase angle of the input signal. Accurate 

capture of a single period worth of data is important and has direct effects on the output. 

In order improve on this project, the ADC should be changed to one that allows for true 

simultaneous, parallel capture of multiple channels. Implementation would require more 

time and budget to properly implement and debug the software and hardware for it to be 

useable. DMA transfer of ADC data to memory may help but there would still be some 

delay on sampling of the other channels. Another improvement is on the generation of the 

sampling clock for the ADC. Currently a microcontroller that is triggered by the rising of 

a 1 PPS synchronized to match with UTC second is used. However, it would be more 

ideal to have a PLL, analog or digital, that is phase-locked with the 1PPS to provide a 

better sampling clock. Currently, if the PMU were to work it only measures voltages but 

it should be extended to include current measurements. The final improvement would be 

looking into a different form of communication aside from UDP, while UDP is fast it is 

also error prone. TCP would be a better form of communication since it ensures 

transmission of packets and ensures correctness through the use of checksums. This 

introduces more software overhead and would increase the amount of time used by the 

microcontroller to transmit. An idea would be to implement the microcontroller writing 
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the synchrophasor to a queue and having another microcontroller handle just 

communications.  
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APPENDIX A: TESTGPS.INO 

#include <Adafruit_GPS.h> 

#define GPSSerial Serial1 

Adafruit_GPS GPS(&GPSSerial);  

 

void setup() { 

  while (!Serial); //Wait until Serial is ready 

  Serial.begin(115200);  

 

  GPS.begin(9600);  

  GPS.sendCommand(PMTK_SET_NMEA_OUTPUT_RMCONLY);  

  GPS.sendCommand(PMTK_SET_NMEA_UPDATE_1HZ);  

  delay(1000);  

  GPSSerial.println(PMTK_Q_RELEASE);  

} 

 

uint32_t timer = millis();  

void loop() { 

  char c = GPS.read(); 

 

  if (GPS.newNMEAreceived()) { 

    Serial.println(GPS.lastNMEA());    

    if (!GPS.parse(GPS.lastNMEA()))    

      return;   

  } 

 

  // Approximately every 1 seconds or so, print out the current stats 

  if (millis() - timer > 1000) { 

    timer = millis(); 

    Serial.print("Time: "); 

    if (GPS.hour < 10) { Serial.print('0'); } 

    Serial.print(GPS.hour, DEC); Serial.print(':'); 

    if (GPS.minute < 10) { Serial.print('0'); } 

    Serial.print(GPS.minute, DEC); Serial.print(':'); 

    if (GPS.seconds < 10) { Serial.print('0'); } 

    Serial.print(GPS.seconds, DEC); Serial.print('.'); 

    if (GPS.milliseconds < 10) { 

      Serial.print("00"); 

    } else if (GPS.milliseconds > 9 && GPS.milliseconds < 100) { 

      Serial.print("0"); 

    } 

    Serial.println(GPS.milliseconds); 

    Serial.print("Date: "); 

    Serial.print(GPS.day, DEC); Serial.print('/'); 

    Serial.print(GPS.month, DEC); Serial.print("/20"); 



63 

 

    Serial.println(GPS.year, DEC); 

    Serial.print("Fix: "); Serial.print((int)GPS.fix); 

    Serial.print(" quality: "); Serial.println((int)GPS.fixquality); 

    if (GPS.fix) { 

      Serial.print("Location: "); 

      Serial.print(GPS.latitude, 4); Serial.print(GPS.lat); 

      Serial.print(", "); 

      Serial.print(GPS.longitude, 4); Serial.println(GPS.lon); 

 

      Serial.print("Speed (knots): "); Serial.println(GPS.speed); 

      Serial.print("Angle: "); Serial.println(GPS.angle); 

      Serial.print("Altitude: "); Serial.println(GPS.altitude); 

      Serial.print("Satellites: "); Serial.println((int)GPS.satellites); 

    } 

  } 

} 
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APPENDIX B: TESTADC.INO 

#define TRUE 1  

#define FALSE 0 

bool OVERSAMPLE_FLAG = TRUE;  

 

int nSamples = 100000;  //Number of test samples to collect 

 

void analogReadOversample16(bool isOversampleRequested) { 

  if(isOversampleRequested) { 

    ADC0->AVGCTRL.reg = ADC_AVGCTRL_SAMPLENUM_16| 

    ADC_AVGCTRL_ADJRES(4);  

    ADC1->AVGCTRL.reg = ADC_AVGCTRL_SAMPLENUM_16 |  

    ADC_AVGCTRL_ADJRES(4);   

    while(ADC0->SYNCBUSY.reg & ADC_SYNCBUSY_AVGCTRL);  

    while(ADC1->SYNCBUSY.reg & ADC_SYNCBUSY_AVGCTRL);  

  }  

  else { 

    ADC0->AVGCTRL.reg = ADC_AVGCTRL_SAMPLENUM_1 |  

    ADC_AVGCTRL_ADJRES(0);  

    ADC1->AVGCTRL.reg = ADC_AVGCTRL_SAMPLENUM_1 |  

    ADC_AVGCTRL_ADJRES(0); 

    while(ADC0->SYNCBUSY.reg & ADC_SYNCBUSY_AVGCTRL);  

    while(ADC1->SYNCBUSY.reg & ADC_SYNCBUSY_AVGCTRL);  

  } 

} 

 

void setup() { 

  Serial.begin(9600);  

  analogReference(AR_DEFAULT);  //Set ADC AREF to 3.3V 

  analogReadResolution(12);     //Set ADC bit resolution to 12 

} 

 

void loop() { 

  unsigned long starttime, endtime, elapsedtime = 0;  

  if(OVERSAMPLE_FLAG) { 

    analogReadOversample16(OVERSAMPLE_FLAG);  

    Serial.println("Execution time of analogRead with Oversampling (microseconds)"); 

  }  

  else if(!OVERSAMPLE_FLAG) { 

    analogReadOversample16(OVERSAMPLE_FLAG);  

    Serial.println("Execution time of analogRead without Oversampling (microseconds)"); 

  } 

  else { 

    return; 

  } 
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  for(int i = 0; i < nSamples; i++) { 

    starttime = micros();  

    analogRead(A0);  

    endtime = micros();  

    elapsedtime = endtime - starttime;    

    Serial.println(elapsedtime);    

  } 

 

  Serial.println("========================== TEST COMPLETE 

=========================="); 

} 
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APPENDIX C: TESTDFT.INO 

#include <arm_math.h> 

#include <arm_const_structs.h> 

#include <arm_common_tables.h> 

#include <math.h> 

 

const uint16_t fftSize = 128;  //FFT length 

uint8_t ifftFlag = 0;                //Inverse-transform flag 

uint32_t doBitReverse = 1;    //Bit Reversal Flag 

int num_samples = 100000;   //Number of desired sample points 

const int buttonPin = 13;  

int buttonState = 0;  

 

static float32_t FFTOutput[fftSize];  //Output array holding FFT results 

 

//There's 128 points from 1 period of 60 Hz, 5 Vp-p sine wave 

//Data from Noisy_Vref5_7.68kHz_30dBW 

float32_t testInput_f32_7680Hz[128] = {0};     //Values omitted for brevity 

 

//There's 256 points from 1 period of 60 Hz, 5 Vp-p sine wave 

//Data from Noisy_Vref5_15.36kHz_30dBW 

float32_t testInput_f32_153600Hz[256] = {0};  //Values omitted for brevity 

 

void setup() { 

  pinMode(buttonPin, INPUT);  

} 

 

void loop() { 

  buttonState = digitalRead(buttonPin);  

   

  if(buttonState == HIGH) { 

    for(int i = 0; i < num_samples; i++) { 

      arm_rfft_fast_instance_f32 arm_rfft; 

      arm_rfft_fast_init_f32(&arm_rfft, fftSize);  

       

      unsigned long start = micros();  

      arm_rfft_fast_f32(&arm_rfft, testInput_f32_7680Hz, FFTOutput, ifftFlag); 

      unsigned long endtime = micros() - start; 

       

      Serial.print(endtime);  

      Serial.print('\n'); 

    } 

  } else { 

  } 

} 
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APPENDIX D: TESTADC_V2.INO 

#define TRUE 1  

#define FALSE 0 

bool OVERSAMPLE_FLAG = TRUE;  

 

int nSamples = 100000;  //Number of test samples to collect 

 

void adjustTSAMP() { 

  ADC0->SAMPCTRL.reg = 1;   //Adjust sampling length  

  ADC1->SAMPCTRL.reg = 1;  

 

  while(ADC0->SYNCBUSY.reg);  

  while(ADC1->SYNCBUSY.reg);  

} 

 

void analogReadOversample16(bool isOversampleRequested) { 

  if(isOversampleRequested) { 

    ADC0->AVGCTRL.reg = ADC_AVGCTRL_SAMPLENUM_16| 

    ADC_AVGCTRL_ADJRES(4);  

    ADC1->AVGCTRL.reg = ADC_AVGCTRL_SAMPLENUM_16 |  

    ADC_AVGCTRL_ADJRES(4);   

    while(ADC0->SYNCBUSY.reg & ADC_SYNCBUSY_AVGCTRL);  

    while(ADC1->SYNCBUSY.reg & ADC_SYNCBUSY_AVGCTRL);  

  }  

  else { 

    ADC0->AVGCTRL.reg = ADC_AVGCTRL_SAMPLENUM_1 |  

    ADC_AVGCTRL_ADJRES(0);  

    ADC1->AVGCTRL.reg = ADC_AVGCTRL_SAMPLENUM_1 |  

    ADC_AVGCTRL_ADJRES(0); 

    while(ADC0->SYNCBUSY.reg & ADC_SYNCBUSY_AVGCTRL);  

    while(ADC1->SYNCBUSY.reg & ADC_SYNCBUSY_AVGCTRL);  

  } 

} 

 

void setup() { 

  Serial.begin(9600);  

  analogReference(AR_DEFAULT);  //Set ADC AREF to 3.3V 

  analogReadResolution(12);     //Set ADC bit resolution to 12 

} 

 

void loop() { 

  adjustTSAMP(); 

  unsigned long starttime, endtime, elapsedtime = 0;  

  if(OVERSAMPLE_FLAG) { 

    analogReadOversample16(OVERSAMPLE_FLAG);  
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    Serial.println("Execution time of analogRead with Oversampling (microseconds)"); 

  }  

  else if(!OVERSAMPLE_FLAG) { 

    analogReadOversample16(OVERSAMPLE_FLAG);  

    Serial.println("Execution time of analogRead without Oversampling (microseconds)"); 

  } 

  else { 

    return; 

  } 

 

  for(int i = 0; i < nSamples; i++) { 

    starttime = micros();  

    analogRead(A0);  

    endtime = micros();  

    elapsedtime = endtime - starttime;    

    Serial.println(elapsedtime);    

  } 

 

  Serial.println("========================== TEST COMPLETE 

=========================="); 

} 
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APPENDIX E: TESTPWM.INO 

int out_pin = 10;   // OC1A/OC1B are on Metro Pins 9 & 10 

 

void setup() { 

  // put your setup code here, to run once: 

  pinMode(out_pin, OUTPUT); 

  TCCR1A = B10100011;   // Timer/Counter1 Control Reg A 

  TCCR1B = B00011001;   // Timer/Counter1 Control Reg B 

  TCCR1C = B00000000;   // Timer/Counter1 Control Reg C 

  OCR1A = 2082;    // Output Compare Register 1A; FastPWM holds output high plus 

one cycle 

} 

 

void loop() {} 
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APPENDIX F: PMU.INO 

#include <Adafruit_GPS.h>  

#include <Ethernet.h>  

#include <SPI.h>  

#include <EthernetUdp.h>  

#include <arm_const_structs.h> 

#include <arm_common_tables.h> 

#include <arm_math.h> 

#include <math.h> 

 

#define GPSSerial Serial1 

Adafruit_GPS GPS(&GPSSerial);  

              

#define NUMCHANNELS 3               // Number of ADC channels in use 

#define INT2VOLT 0.00080586         // Conversion factor from ADC 12-bit value to 

floating point  

#define TIMEBTWNPULSES 0.000130208  // Time between ADC sampling pulses 

#define FREQRES 60                  // Frequency resolution of FFT  

#define NOMFREQ 60                  // Nominal frequency of the input signals 

#define MIDPOINT 128/2              // Midpoint of a period for a given signal  

#define pi 3.14159265 

#define PIOVER4 pi/4 

 

inline float32_t derivative(float32_t y1, float32_t y2, uint32_t x1, uint32_t x2 ) { 

  return (y2-y1)/(x2-x1);  

} 

 

// ========== Ethernet-related Variables and Object(s) ========== 

byte MAC[] = { 

  0x98, 0x76, 0xB6, 0x11, 0xB0, 0x97 

}; 

IPAddress IP(192, 168, 1, 218); 

IPAddress DestIP(192, 168, 1, 217);  

unsigned int localPort = 8888; 

char ethernetCSpin = 21;   

char OutBuffer[256];  

EthernetUDP UDP;  

 

// ========== Interrupt-related Variables ========== 

const byte interruptPin = 7;      // Digital Pin used to check for external interrupt signal 

volatile uint8_t n = 0;               // Keeps track of number of samples sets collected 

volatile uint8_t m = 0;              // Keeps track of which set of datapoints currently 

sampling (Max = 60) 

volatile bool hasSampledPeriod = false;  

volatile byte sampSet = 1;        // Keeps track of which sampData_CHx_x to write to  
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// ========== FFT-related Variables ========== 

const uint16_t fftSize = 128;     // FFT length 

const uint8_t ifftFlag = 0;       // Inverse-transform flag  

 

// Sampled data for each CHx 

// There are two sets; one is used to keep track of sampled data for a period 

// The other set is used in actual FFT calculation 

static float32_t sampData_CH0_1[fftSize] = {0}; 

static float32_t sampData_CH1_1[fftSize] = {0}; 

static float32_t sampData_CH2_1[fftSize] = {0}; 

 

static float32_t sampData_CH0_2[fftSize] = {0};  

static float32_t sampData_CH1_2[fftSize] = {0};  

static float32_t sampData_CH2_2[fftSize] = {0};  

 

// FFT Output Buffer for each channel  

static float32_t fftOutput_CH0[fftSize] = {0}; 

static float32_t fftOutput_CH1[fftSize] = {0}; 

static float32_t fftOutput_CH2[fftSize] = {0};  

 

// Complex Magnitude for each channel 

// When FFT is calculated and stored in fftOutput_CHx 

// the data is formatted as: fftOutput_CHx = {real[0], imag[0], ... real[(N/2)-1], 

imag[(N/2)-1]} 

// when the complex magnitude is calculated one pair of real and imag portions are used 

// leaving one data point, this is why the cmplxMag_CHx is of size fftSize/2 

static float32_t cmplxMag_CH0[fftSize/2] = {0}; 

static float32_t cmplxMag_CH1[fftSize/2] = {0}; 

static float32_t cmplxMag_CH2[fftSize/2] = {0}; 

 

// Pointer declaration and initilizations for sampled data arrays 

// Initialized to the first set of arrays 

float32_t *pSampData_CH0 = &sampData_CH0_1[0];  

float32_t *pSampData_CH1 = &sampData_CH1_1[0];  

float32_t *pSampData_CH2 = &sampData_CH2_1[0];  

 

// ========== PMU Struct ========== 

struct PMU_output { 

  float32_t magnitude;      // Amplitude of signal 

  float32_t phase[2] = {0}; // Phase angle of signal; phase[0] is the previous angle, 

phase[1] is the newest angle.  

  float32_t ROCOF;          // Rate of Change of Frequency 

  float32_t Real;           // Real component  

  float32_t Imag;           // Imaginary component 

  uint32_t UTC[2] = {0};    // Timestamp 

  float32_t microseconds;   // Microsecond timestamp, GPS doesn't give this accuracy.  
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  uint32_t date;            // Current date (Format: DD,MM,YY) 

  uint32_t gps_latitude;    // Current latitude  

  byte gps_lat;             // East (E) or West (W) 

  uint32_t gps_longitude;   // Current longitude  

  byte gps_lon;             // North (N) or South (S) 

} synch_CH0, synch_CH1, synch_CH2;  

 

static PMU_output synch_CH[NUMCHANNELS] = {synch_CH0, synch_CH1, 

synch_CH2}; // Array of PMU_output structs 

 

// ========== ADC Adjustment Function ========== 

// adjustTSAMP() 

// Used to adjust sampling period of ADC 

// Adafruit/Arduino hardcode sampling period to be 4 cycles of clock 

void adjustTSAMP() { 

  // Adjusting sampling period for each ADC 

  ADC0->SAMPCTRL.reg = 1; 

  while(ADC0->SYNCBUSY.reg); 

  ADC1->SAMPCTRL.reg = 1;   

  while(ADC1->SYNCBUSY.reg);  

} 

 

// ========== Atan/Atan2 Calculation Function(s) ========== 

float32_t ApproxAtan(float32_t phi) { 

  float32_t absphi = 0;  

  if( phi < 0 ) { 

    absphi = -phi;  

  } 

  absphi = phi;  

  return (PIOVER4*phi)+(0.273*phi)-absphi;  

} 

 

float32_t ApproxAtan2(float32_t y, float32_t x) { 

  if( x != 0.0 ) { 

    if( abs(x) > abs(y) ) { 

      const float32_t z = y / x;  

      if( x > 0.0 ) { 

        return ApproxAtan(z);  

      } 

      else if( y >= 0.0 ) { 

        return ApproxAtan(z) + pi;  

      } 

      else { 

        return ApproxAtan(z) - pi;  

      } 

    } 
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  } 

  else { 

    if( y > 0.0 ) { 

      return pi/2;  

    } 

    else if( y < 0.0 ) { 

      return -pi/2; 

    } 

  } 

  return 0.0;  

} 

 

void setup() { 

  while(!Serial);  

  Serial.begin(115200);  

  GPS.begin(9600);  

  GPS.sendCommand(PMTK_SET_NMEA_OUTPUT_RMCONLY);  

  GPS.sendCommand(PMTK_SET_NMEA_UPDATE_1HZ);  

  delay(1000);  

 

  // Sets digital pin 7 as input 

  pinMode(interruptPin, INPUT); 

  // Attachs interrupt to digital pin 7, calls SAMPLE function as rising edge.  

  attachInterrupt(digitalPinToInterrupt(interruptPin), SAMPLE, RISING); 

 

  Ethernet.init(ethernetCSpin); 

  Ethernet.begin(MAC, IP); 

  UDP.begin(localPort);   

} 

 

//========================Main loop ======================== 

void loop() { 

  char i = 0;   // Iterator variable  

  // Reads a new character from the GPS 

  char NMEAmsg = GPS.read();  

  // Keep checking if a new NMEA messaged as been received 

  if( GPS.newNMEAreceived() ) {      

    // If a NMEA message is successfully parsed, update synchrophasor variables.  

    if( GPS.parse(GPS.lastNMEA()) ) { 

      // Update to the new UTC timestamp 

      synch_CH0.UTC[1] = GPS.fullUTC; 

      for(i = 1; i < NUMCHANNELS; i++) { 

        synch_CH[i].UTC[1] = synch_CH[0].UTC[1];  

      } 

         

      // Update the date if it changes 
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      if(synch_CH[0].date != GPS.fulldate) { 

        synch_CH[0].date = GPS.fulldate; 

        for(i = 1; i < NUMCHANNELS; i++) { 

          synch_CH[i].date = synch_CH[0].date;   

        } 

      } 

 

      // Update the latitude if it changes 

      if(synch_CH[0].gps_latitude != GPS.latitude) { 

        synch_CH[0].gps_latitude = GPS.latitude;  

        for(i = 1; i < NUMCHANNELS; i++) { 

          synch_CH[i].gps_latitude = synch_CH[0].gps_latitude;  

        } 

      } 

 

      // Update the latitude cardinal direction if it changes 

      if(synch_CH[0].gps_lat != GPS.lat) { 

        synch_CH[0].gps_lat = GPS.lat;  

        for(i = 1; i < NUMCHANNELS; i++) { 

          synch_CH[i].gps_lat = synch_CH[0].gps_lat;  

        } 

      } 

 

      // Update the longitude if it changes 

      if(synch_CH[0].gps_longitude != GPS.longitude) { 

        synch_CH[0].gps_longitude = GPS.longitude; 

        for(i = 1; i < NUMCHANNELS; i++) { 

          synch_CH[i].gps_longitude = synch_CH[0].gps_longitude;  

        } 

      } 

 

      // update the longitude cardinal direction if it changes 

      if(synch_CH[0].gps_lon != GPS.lon) { 

        synch_CH[0].gps_lon = GPS.lon; 

        for(i = 1; i < NUMCHANNELS; i++) { 

          synch_CH[i].gps_lon = synch_CH[0].gps_lon;  

        } 

      } 

    } 

  } 

 

  if (hasSampledPeriod) { 

    hasSampledPeriod = false;  

     

    float32_t maxValue_CH0, maxValue_CH1, maxValue_CH2 = 0;   

    uint32_t maxIdx_CH0, maxIdx_CH1, maxIdx_CH2 = 0;       
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    arm_rfft_fast_instance_f32 arm_rfft;     

    arm_rfft_fast_init_f32(&arm_rfft, fftSize);   // Initializes rfft for length of fftSize 

 

    if( sampSet == 1 ){ 

      arm_rfft_fast_f32(&arm_rfft, sampData_CH0_2, fftOutput_CH0, ifftFlag);  

      arm_rfft_fast_f32(&arm_rfft, sampData_CH1_2, fftOutput_CH1, ifftFlag);  

      arm_rfft_fast_f32(&arm_rfft, sampData_CH2_2, fftOutput_CH2, ifftFlag);  

    } 

    else if( sampSet == 2 ){ 

      arm_rfft_fast_f32(&arm_rfft, sampData_CH0_1, fftOutput_CH0, ifftFlag);  

      arm_rfft_fast_f32(&arm_rfft, sampData_CH1_1, fftOutput_CH1, ifftFlag);  

      arm_rfft_fast_f32(&arm_rfft, sampData_CH2_1, fftOutput_CH2, ifftFlag); 

    } 

 

    // Calculation of complex magnitude 

    arm_cmplx_mag_f32(fftOutput_CH0, cmplxMag_CH0, fftSize/2); 

    arm_cmplx_mag_f32(fftOutput_CH1, cmplxMag_CH1, fftSize/2); 

    arm_cmplx_mag_f32(fftOutput_CH2, cmplxMag_CH2, fftSize/2); 

 

    // Calculation of max value and its corresponding freq. index 

    arm_max_f32(cmplxMag_CH0, fftSize/2, &maxValue_CH0, &maxIdx_CH0); 

    arm_max_f32(cmplxMag_CH1, fftSize/2, &maxValue_CH1, &maxIdx_CH1);  

    arm_max_f32(cmplxMag_CH2, fftSize/2, &maxValue_CH2, &maxIdx_CH2);  

 

    synch_CH0.magnitude = maxValue_CH0/fftSize;  

    synch_CH0.phase[1] = ApproxAtan2(fftOutput_CH0[2*maxIdx_CH0+1], 

fftOutput_CH0[2*maxIdx_CH0])*180/pi;  

    synch_CH1.magnitude = maxValue_CH1/fftSize;  

    synch_CH1.phase[1] = ApproxAtan2(fftOutput_CH1[2*maxIdx_CH1+1], 

fftOutput_CH1[2*maxIdx_CH1])*180/pi;  

    synch_CH2.magnitude = maxValue_CH2/fftSize;  

    synch_CH2.phase[1] = ApproxAtan2(fftOutput_CH2[2*maxIdx_CH2+1], 

fftOutput_CH2[2*maxIdx_CH1])*180/pi; 

     

    for(i = 0; i < NUMCHANNELS; i++) { 

      synch_CH[i].ROCOF = derivative(synch_CH[i].phase[1], synch_CH[i].phase[0], 

synch_CH[i].UTC[1], synch_CH[i].UTC[0]);    // Calculation of ROCOF 

      synch_CH[i].phase[0] = synch_CH[i].phase[1];                                                                           

// The "current" phase becomes the "previous" phase for the next calculation 

      synch_CH[i].microseconds = (MIDPOINT*TIMEBTWNPULSES)*(m+1);                                                            

// Microseconds timestamp for synchrophasor  

    } 

 

    Serial.println(synch_CH0.phase[1]) 
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//===================Interrupt Service Routine ===================== 

// Function that samples each channel in use on the ADC sequentially 

// Called everytime their is a rising signal on the interrupt pin 

void SAMPLE() {  

  // Saves analogRead values per channel to appropriate array in memory using pointers 

  // Raw ADC value is converted to floating point before writing to array 

  *(pSampData_CH0 + n) = analogRead(A0)*INT2VOLT; 

  *(pSampData_CH1 + n) = analogRead(A1)*INT2VOLT; 

  *(pSampData_CH2 + n) = analogRead(A2)*INT2VOLT;  

 

  // Sets flag to TRUE when a full period sample has been acquired 

  // This initiates FFT calculation after interrupt function is complete 

  if( (n+1) % fftSize == 0 ) { 

    m = m + 1;  

    hasSampledPeriod = true;  

  }  

  else { 

    hasSampledPeriod = false;  

  } 

 

  m = (m == (NOMFREQ-1)) ? 0 : m;    // Resets tracking of sets 

    

  // Writes data sequentially until an array limit is reached, then arrays are switched.    

  if( n < (fftSize)-1 ) { 

    n = n + 1;  

  }  

  else { 

    n = 0;  // Resets counter 

    if(sampSet == 1) { 

      pSampData_CH0 = &sampData_CH0_2[0]; 

      pSampData_CH1 = &sampData_CH1_2[0]; 

      pSampData_CH2 = &sampData_CH2_2[0];  

      sampSet = 2;  // Designates set 2 as the arrays used in sampling data 

    } 

    else if(sampSet == 2) { 

      pSampData_CH0 = &sampData_CH0_1[0];  

      pSampData_CH1 = &sampData_CH1_1[0];  

      pSampData_CH2 = &sampData_CH2_1[0];  

      sampSet = 1;  // Designates set 1 as the arrays used in sampling data    

    } 

  } 

} 
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APPENDIX G: GENSAMPLECLK.INO 

// OC1A/OC1B are on Metro Pins 9 & 10 

 

#define HZ7680 2082 

#define HZ3840 4163 

 

static int interruptPin_1PPS = 2;  

 

void setup() { 

  Serial.begin(9600);  

  pinMode(interruptPin_1PPS, INPUT);  

  pinMode(9, OUTPUT);  

  pinMode(10, OUTPUT);  

  attachInterrupt(digitalPinToInterrupt(interruptPin_1PPS), genSamplingSignal, 

RISING);  

} 

 

void loop() {} 

 

// Generate ADC discplining signal  

void genSamplingSignal() { 

  //Serial.println("Beginning Generation of ADC Disciplining Signal. . .");  

  TCCR1A = B10100011;   // Timer/Counter1 Control Reg A 

  TCCR1B = B00011001;   // Timer/Counter1 Control Reg B 

  OCR1A = HZ7680;    // Output Compare Register 1A; FastPWM holds output high plus 

one cycle 

} 


